Linear Algebra A Geometric Approach By S Kumaresan BEST
DOWNLOAD >> https://bytlly.com/2sUyEy
The classical paradigm for data modeling invariably assumes that an input/output partitioning of the data is a priori given. For linear models, this paradigm leads to computational problems of solving approximately overdetermined systems of linear equations. Examples of most simple data fitting problems, however, suggest that the a priori fixed input/output partitioning of the data may be inadequate: (1) the fitting criteria often depend implicitly on the choice of the input and output variables, which may be arbitrary, and (2) the resulting computational problems are ill-conditioned in certain cases. An alternative paradigm for data modeling, sometimes refered to as the behavioral paradigm, does not assume a priori fixed input/output partitioning of the data. The corresponding computational problems involve approximation of a matrix constructed from the data by another matrix of lower rank. The chapter proceeds with review of applications in systems and control, signal processing, computer algebra, chemometrics, psychometrics, machine learning, and computer vision that lead to low rank approximation problems. Finally, generic methods for solving low rank approximation problems are outlined. 2b1af7f3a8